Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Cancer Discov ; 3(3): 220-239, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35394496

RESUMO

Clonal hematopoiesis (CH) refers to the age-related expansion of specific clones in the blood system, and manifests from somatic mutations acquired in hematopoietic stem cells (HSCs). Most CH variants occur in the gene DNMT3A, but while DNMT3A-mutant CH becomes almost ubiquitous in aging humans, a unifying molecular mechanism to illuminate how DNMT3A-mutant HSCs outcompete their counterparts is lacking. Here, we used interferon gamma (IFNγ) as a model to study the mechanisms by which Dnmt3a mutations increase HSC fitness under hematopoietic stress. We found Dnmt3a-mutant HSCs resist IFNγ-mediated depletion, and IFNγ-signaling is required for clonal expansion of Dnmt3a-mutant HSCs in vivo. Mechanistically, DNA hypomethylation-associated overexpression of Txnip in Dnmt3a-mutant HSCs leads to p53 stabilization and upregulation of p21. This preserves the functional potential of Dnmt3a-mutant HSCs through increased quiescence and resistance to IFNγ-induced apoptosis. These data identify a previously undescribed mechanism to explain increased fitness of DNMT3A-mutant clones under hematopoietic stress. SIGNIFICANCE: DNMT3A mutations are common variants in clonal hematopoiesis, and recurrent events in blood cancers. Yet the mechanisms by which these mutations provide hematopoietic stem cells a competitive advantage as a precursor to malignant transformation remain unclear. Here, we use inflammatory stress to uncover molecular mechanisms leading to this fitness advantage.See related commentary by De Dominici and DeGregori, p. 178. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Hematopoese , Humanos , Proteínas de Transporte/genética , Hematopoiese Clonal , Células Clonais , DNA (Citosina-5-)-Metiltransferases/genética , Metilases de Modificação do DNA/genética , Hematopoese/genética , Células-Tronco Hematopoéticas
2.
Stem Cell Reports ; 14(4): 551-560, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220332

RESUMO

The DNA methylation regulators DNMT3A and TET2 are recurrently mutated in hematological disorders. Despite possessing antagonistic biochemical activities, loss-of-function murine models show overlapping phenotypes in terms of increased hematopoietic stem cell (HSC) fitness. Here, we directly compared the effects of these mutations on hematopoietic progenitor function and disease initiation. In contrast to Dnmt3a-null HSCs, which possess limitless self-renewal in vivo, Tet2-null HSCs unexpectedly exhaust at the same rate as control HSCs in serial transplantation assays despite an initial increase in self-renewal. Moreover, loss of Tet2 more acutely sensitizes hematopoietic cells to the addition of a common co-operating mutation (Flt3ITD) than loss of Dnmt3a, which is associated with a more rapid expansion of committed progenitor cells. The effect of Tet2 mutation manifests more profound myeloid lineage skewing in committed hematopoietic progenitor cells rather than long-term HSCs. Molecular characterization revealed divergent transcriptomes and chromatin accessibility underlying these functional differences.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Adaptação Fisiológica , Animais , Diferenciação Celular , Autorrenovação Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Proteínas Proto-Oncogênicas/metabolismo
3.
Exp Hematol ; 80: 36-41.e3, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31812712

RESUMO

Epidemiological sequencing studies have revealed that somatic mutations characteristic of myeloid neoplasms can be detected in the blood of asymptomatic individuals decades prior to presentation of any clinical symptoms. This premalignant condition is known as clonal hematopoiesis of indeterminate potential (CHIP). Despite the fact these mutant clones become readily detectable in the blood of elderly individuals (∼10% of people over the age of 65), the overall rate of disease progression remains relatively low. Thus, in addition to genetic mutations, there are likely environmental factors that contribute to clonal evolution in people with CHIP. One environmental stress that increases with age is inflammation. Although chronic inflammation is detrimental to the long-term function of normal hematopoietic stem cells, several recent studies in animal models have indicated hematopoietic stem cells with CHIP mutations may be resistant to these deleterious effects. However, direct evidence indicating a correlation between increased inflammation and accelerated CHIP in humans is currently lacking. In this study, we sequenced the peripheral blood cells of a cohort of patients with ulcerative colitis, an autoimmune disease characterized by increased levels of pro-inflammatory cytokines. This analysis revealed that the inflammatory environment of ulcerative colitis promoted CHIP with a distinct mutational spectrum, notably positive selection of clones with DNMT3A and PPM1D mutations. We also show a specific association between elevated levels of serum interferon gamma and DNMT3A mutations. These data add to our understanding of how cell extrinsic factors select for clones with specific mutations to promote clonal hematopoiesis.


Assuntos
Colite Ulcerativa/patologia , Hematopoese/genética , Interferon gama/sangue , Mutação , Fator de Necrose Tumoral alfa/análise , Idoso , Idoso de 80 Anos ou mais , Células Clonais/citologia , Colite Ulcerativa/sangue , Colite Ulcerativa/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/sangue , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Proteína Fosfatase 2C/genética
4.
Leukemia ; 33(10): 2506-2521, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30936419

RESUMO

The histone demethylase KDM6B (JMJD3) is upregulated in blood disorders, suggesting that it may have important pathogenic functions. Here we examined the function of Kdm6b in hematopoietic stem cells (HSC) to evaluate its potential as a therapeutic target. Loss of Kdm6b lead to depletion of phenotypic and functional HSCs in adult mice, and Kdm6b is necessary for HSC self-renewal in response to inflammatory and proliferative stress. Loss of Kdm6b leads to a pro-differentiation poised state in HSCs due to the increased expression of the AP-1 transcription factor complex (Fos and Jun) and immediate early response (IER) genes. These gene expression changes occurred independently of chromatin modifications. Targeting AP-1 restored function of Kdm6b-deficient HSCs, suggesting that Kdm6b regulates this complex during HSC stress response. We also show Kdm6b supports developmental context-dependent leukemogenesis for T-cell acute lymphoblastic leukemia (T-ALL) and M5 acute myeloid leukemia (AML). Kdm6b is required for effective fetal-derived T-ALL and adult-derived AML, but not vice versa. These studies identify a crucial role for Kdm6b in regulating HSC self-renewal in different contexts, and highlight the potential of KDM6B as a therapeutic target in different hematopoietic malignancies.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Autorrenovação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/patologia , Fatores de Transcrição/genética , Regulação para Cima/genética
5.
Cancer Cell ; 34(5): 741-756.e8, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30423295

RESUMO

How specific genetic lesions contribute to transformation of non-malignant myeloproliferative neoplasms (MPNs) and myelodysplastic syndromes (MDSs) to secondary acute myeloid leukemia (sAML) are poorly understood. JARID2 is lost by chromosomal deletions in a proportion of MPN/MDS cases that progress to sAML. In this study, genetic mouse models and patient-derived xenografts demonstrated that JARID2 acts as a tumor suppressor in chronic myeloid disorders. Genetic deletion of Jarid2 either reduced overall survival of animals with MPNs or drove transformation to sAML, depending on the timing and context of co-operating mutations. Mechanistically, JARID2 recruits PRC2 to epigenetically repress self-renewal pathways in hematopoietic progenitor cells. These studies establish JARID2 as a bona fide hematopoietic tumor suppressor and highlight potential therapeutic targets.


Assuntos
Autorrenovação Celular/genética , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Complexo Repressor Polycomb 2/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Autorrenovação Celular/fisiologia , Transformação Celular Neoplásica/patologia , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/patologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Transplante Heterólogo
6.
Cell Rep ; 23(1): 1-10, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617651

RESUMO

Somatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs) skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Cancer Cell ; 33(1): 13-28.e8, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316427

RESUMO

Targeting of general coactivators is an emerging strategy to interfere with oncogenic transcription factors (TFs). However, coactivator perturbations often lead to pleiotropic effects by influencing numerous TFs. Here we identify TAF12, a subunit of TFIID and SAGA coactivator complexes, as a selective requirement for acute myeloid leukemia (AML) progression. We trace this dependency to a direct interaction between the TAF12/TAF4 histone-fold heterodimer and the transactivation domain of MYB, a TF with established roles in leukemogenesis. Ectopic expression of the TAF4 histone-fold fragment can efficiently squelch TAF12 in cells, suppress MYB, and regress AML in mice. Our study reveals a strategy for potent MYB inhibition in AML and highlights how an oncogenic TF can be selectively neutralized by targeting a general coactivator complex.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Humanos , Camundongos Transgênicos , Oncogenes
8.
Exp Hematol ; 57: 14-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939416

RESUMO

Genome sequencing efforts have identified virtually all of the important mutations in adult myeloid malignancies. More recently, population studies have identified cancer-associated variants in the blood of otherwise healthy individuals as they age, a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). This suggests that these mutations may occur in hematopoietic stem cells (HSCs) long before any clinical presentation but are not necessarily harbingers of transformation because only a fraction of individuals with CHIP develop hematopoietic pathologies. Delineation between CHIP variants that predispose for disease versus those that are more benign could be used as a prognostic factor to identify individuals at greater risk for transformation. To achieve this, the biological impact of CHIP variants on HSC function must be validated. One variant that has been identified recurrently in CHIP is a gain-of-function missense mutation in the imprinted gene GNAS (Guanine Nucleotide Binding Protein, Alpha Stimulating). In this study, we examined the effect of the GNASR201C variant on HSC function. Ectopic expression of GNASR201C supported transplantable HSC activity and improved lymphoid output in secondary recipients. Because declining lymphoid output is a hallmark of aging, GNASR201C mutations may sustain lymphoid-biased HSCs over time and maintain them in a developmental state favorable for transformation.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação com Ganho de Função , Hematopoese/genética , Mutação de Sentido Incorreto , Animais , Transplante de Medula Óssea , Contagem de Células , Senescência Celular , Cromograninas/fisiologia , DNA Complementar/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Redes Reguladoras de Genes , Genes Reporter , Vetores Genéticos/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Quimeras de Transplante
9.
Blood ; 125(4): 619-28, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25416276

RESUMO

Genome sequencing studies of patient samples have implicated the involvement of various components of the epigenetic machinery in myeloid diseases, including the de novo DNA methyltransferase DNMT3A. We have recently shown that Dnmt3a is essential for hematopoietic stem cell differentiation. Here, we investigated the effect of loss of Dnmt3a on hematopoietic transformation by forcing the normally quiescent hematopoietic stem cells to divide in vivo. Mice transplanted with Dnmt3a-null bone marrow in the absence of wildtype support cells succumbed to bone marrow failure (median survival, 328 days) characteristic of myelodysplastic syndromes with symptoms including anemia, neutropenia, bone marrow hypercellularity, and splenomegaly with myeloid infiltration. Two out of 25 mice developed myeloid leukemia with >20%blasts in the blood and bone marrow. Four out of 25 primary mice succumbed to myeloproliferative disorders, some of which progressed to secondary leukemia after long latency. Exome sequencing identified cooperating c-Kit mutations found only in the leukemic samples. Ectopic introduction of c-Kit variants into a Dnmt3a-deficient background produced acute leukemia with a short latency (median survival, 67 days). Our data highlight crucial roles of Dnmt3a in normal and malignant hematopoiesis and suggest that a major role for this enzyme is to facilitate developmental progression of progenitor cells at multiple decision checkpoints.


Assuntos
Crise Blástica/mortalidade , Medula Óssea/enzimologia , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , DNA (Citosina-5-)-Metiltransferases , Células-Tronco Hematopoéticas/enzimologia , Leucemia Mieloide Aguda/enzimologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Crise Blástica/genética , Crise Blástica/patologia , Medula Óssea/patologia , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , DNA Metiltransferase 3A , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
10.
J Agric Food Chem ; 60(5): 1243-50, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22224711

RESUMO

Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.


Assuntos
Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Lolium/química , Vacúolos/metabolismo , Austrália , Transporte Biológico , Europa (Continente) , Glicina/metabolismo , Glicina/farmacologia , Herbicidas/metabolismo , Lolium/efeitos dos fármacos , Lolium/metabolismo , Espectroscopia de Ressonância Magnética , América do Sul , Glifosato
11.
Biochemistry ; 48(5): 951-9, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19140736

RESUMO

Proline dehydrogenase (PRODH) catalyzes the oxidation of l-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-l-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue l-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 A, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.


Assuntos
Proteínas de Bactérias/química , Sequência Conservada , Proteínas de Escherichia coli/química , Hidroxiprolina/química , Proteínas de Membrana/química , Prolina Oxidase/química , Prolina/química , Tirosina/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidroxiprolina/genética , Hidroxiprolina/metabolismo , Dados de Sequência Molecular , Prolina/genética , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Especificidade por Substrato , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...